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Introduction
The goal of our project was to estimate, how much information is contained in
Voltage Sensitive Dye Imaging (VSDI) data [1, 2]. Typically, the fluorescence
changes (∆F ) recorded in response to the visual stimulation are global, i.e.
spanning most of the recording frame.
Can we read much more from VSDI recordings?
To answer this question we employed stimuli with a rich spatio-temporal
structure—natural scene movies.

Methods
Voltage Sensitive Dye Imaging was performed over the primary visual cortex (area 18) of cats. Parallel electrode recordings were
available in 11 experiments. The stimuli were natural scene movies (1&2) in either a full (FF), or a local field of view (circular
Gaussian patches A&B) presented on a computer screen. The stimuli movies were recorded (at 25 Hz) from a camera mounted
on a head of a cat strolling through a leafy environment. The sampling rate was 200 Hz for VSDI and 1000 Hz for electrode
recordings.
The preprocessing applied to most of the images involved pixelwise division by “frame zero” (the first 200 ms recorded before the
stimulus onset), followed by a “blank”-normalisation. For Step 1 and 2, the PCA decomposition was used for denoising (first 25
(50) components of each condition were included), in Step 3 — low-pass spatial filtering with a Gaussian was used instead. In
Step 3, frames were binned by 40 ms to match the movie frequency, most of the figures are also prepared on resized frames (4x).

Step 1
The “electrode-trace” in the VSDI

Spike-triggered averaging method was used to reveal VSDI
activity maps before and after the spike occurred. Here, the
activity rise (∆s, where s stands for the relative fluorescence
change s = ∆F/F ) is shown for all conditions and 50 ms:
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∆s is in agreement with the electrode position (0–10 ms):
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much better than the overall activity (s) at the same time:
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The quality of the differential maps depends on the number
of available spikes. ∆s across all experiments:
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Step 2
Time-frequency decomposition

Matching pursuit (mp4, http://eeg.pl/mp, [3]) was
used to approximate the Wigner distribution of the sig-
nal recorded over a chosen cortical region (here, the area
retinotopically corresponding to the upper (A) patch of the
movies). With 200 Hz sampling frequency of VSDI, we ex-
pected to see the signatures of γ oscillations.

A1B1

0 0.5 1 1.5

20

40

60

80

100

A1

0 0.5 1 1.5

B1

0 0.5 1 1.5

FF1

 

 

0 0.5 1 1.5

−35

−30

−25

−20

However, the highest frequencies in the signal (46 and 92 Hz)
turned out to be caused by the slight fluctuations in the in-
tensity of our excitation light. The second highest frequency
(25 Hz) corresponded to the natural movie refreshment rate
preventing us from forming hypotheses about the β activity
in this higher frequency range.
Activity in the lower β range (15–20 Hz) seemed to be most
robust when only the A-patch was stimulated:
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We conclude that the lack of evidence for the higher fre-
quency brain activity in our recordings is either due to (i) our
signal-to-noise ratio, (ii) a different nature of VSDI against
LFP, or (iii) the γ activity can only be read from single trials
(induced activity).

Step 3
Linear decomposition of stimuli vs VSDI movies

Principal Component Analysis provides a linear decomposi-
tion of signal into orthogonal components. Our goal was to
compare, how many of these components are necessary to
explain most of the signal variance in both the input:
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and the corresponding VSDI responses:
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Let X be a t×n data matrix, centered such that 〈X〉n = 0.

C = XXT/n = UΛUT (1)

U [t× t] are the orthonormal PCA components, Λ [t× t]
represents the variance of the signal explained by each com-
ponent. The corresponding spatial patterns were achieved
by projecting the data onto the (temporal) components:

Y = UTΛ−1/2X. (2)
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The variance distribution among consequent components:
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strongly depends on (i) size of the image, (ii) spatial filtering,
i.e. signal quality.
We realised it is not straightforward to compare the natural
scene movies and VSDI decomposition, because VSDI con-
tains not only the neural-related response, but also artifacts
carrying large variance. Unless we assume some character-
istics of the interesting signal (e.g. a low spatial frequency),
it is hard to decide, what are the informative parts of the
signal.

Additionally, we tried a co-PCA on the sphered input-output
signals. The resulting co-PCA components had almost iden-
tical λ values, thus we achieved a set of orthogonal images,
but there were no components more important than the oth-
ers in explaining the signal.

Finally, feeding the PCA with the first time derivative of the
VSDI signal yields components that are much more regular:
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Either of the procedures leads us to conclude, that much
fewer components are necessary to explain the VSDI signal
than the natural scenes, i.e. dimensionality of our signal is
strongly reduced in comparison to the input.

Conclusions and Further Directions
•VSDI-STA provided a good prediction of the electrode position, though the excited field around it was

wide,
⇒Use the movie features for triggering;
•PCA is not the best tool for analysing movies, because it does not take into account the history,
⇒Try feeding more frames for each input to the PCA,
⇒Non-linear PCA.
•Correct preprocessing is of the most importance,
⇒Looking at the derivative of the signal already provides interesting information. More elaborate pre-

processing assumptions possibly will yield more informative results.
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