Vision Res., Vol. 36, No. 6, pp. 869-887, 1996
Copyright © 1996 Elsevier Science Ltd. All rights reserved
Printed in Great Britain.

0042-6989(35)00192-1 0042-6989/96 $15.00 + .00

@ Pergamon

Contribution of Area MT to Perception of Three-
dimensional Shape: a Computational Study

GIEDRIUS T. BURACAS,* THOMAS D. ALBRIGHT*
Received 9 March 1995; in revised form 11 July 1995

Successful recognition and manipulation of objects in one’s visual environment is critically
dependent upon the ability to recover three-dimensional (3D) surface geometry from two-
dimensional (2D) retinal images. The relative motion of image features, caused by relative
displacement of object and observer, has characteristic properties that betray components of the 3D
source geometry (distance, tilt, slant and curvature) and is among the most valuable sources of
information used for 3D surface recovery by the primate visual system. We have considered the
behavior of motion-sensitive neurons in primate visual cortex and found that their properties
closely resemble those of differential motion operators that can be used to formally characterize the
3D shape of a smooth moving surface. Qur analysis has led us to identify a set of three orders of
filters for differential motion detection. These filters behave in a manner that is strikingly similar to
the spatial and velocity tuning profiles of a sub-population of neurons—those possessing
antagonistic motion surrounds—in the middle temporal visual area (MT). On the basis of this

analysis, we suggest that MT neurons subserve 3D surface recovery from relative motion cues.

Shape-from-motion Receptive field surrounds
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INTRODUCTION

The primate visual system affords effective behavioral
interaction with a three-dimensional (3D) world. This
ability is contingent upon recovery of the 3D spatial
relationships between objects and the shapes of their
surfaces from the two-dimensional (2D) spatio-temporal
properties of retinal images. Multiple 2D image proper-
ties, including shading, motion and binocular positional
disparity contain implicit information about environ-
mental structure and are available as cues for recovery of
that structure. It has long been recognized (von
Helmbholtz, 1867; Gibson, 1950) that the relative motion
of retinal image features is among the richest of such
cues. Of particular value is the pattern of retinal motion
induced by the relative movement of an observer and a
rigid environmental object/surface {i.e. either the ob-
server moves or there is a moving object(s) present in his/
her visual field]|—a pattern that is commonly termed
‘optical flow.” Brain mechanisms responsible for 3D
surface recovery from optical flow (i.e. ‘shape-from-
motion” mechanisms) are suggested by both neurophy-
siological data and computational considerations. Our
goal has been to establish that motion-sensitive neurons
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in the middle temporal visual area (area MT) of primate
cortex are endowed with computational properties that
could allow them to estimate shape-related parameters
from optical flow.

Many computational approaches to the shape-from-
motion (SFM) problem have as a foundation the fact that
the 3D surface of an environmental object can be
characterized or represented by standard geometrical
descriptors, such as tilt, slant and curvature. Although
such descriptors are formally computable from the first-
and second-order spatial derivatives of the surface
function, the projective formation of the retinal image
renders the explicit surface function unavailable. Because
in most cases the velocity vector field is proportional (to a
first approximation) to the surface function, it is none-
theless possible to compute geometrical shape descriptors
by applying differential operators to the flow field itself.
The first-order properties of the optic flow and the
possibility that the primate visual system has adopted a
strategy for estimating these properties have been
subjects of study for many years. It has, for example,
been shown that the linear portion (i.e. the planar portion)
of the velocity vector field can be parsed into independent
components of local rotation, expansion/contraction and
shear (Koenderink & Van Doorn, 1975). These compo-
nents of optical flow allow affine estimation of surface
orientation. The second-order components of the optic
flow can be used to compute affine estimates of shape
invariants of smooth surfaces, such as principal normal
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curvatures (Koenderink & van Doorn, 1992; Dijkstra,
1994).

Neurophysiological data thought to bear on this issue
are mainly those providing evidence for neurons that
detect differential motion within a receptive field. Of
particular interest are neurons that possess center-
surround motion antagonism. Such neurons typically
respond optimally when direction/speed of motion in the
central or ‘classical’ receptive field (CRF) differs from
that present in a larger ‘surround’ receptive field (SRF).
Neurons of this sort have been found to exist in the optic
tectum of pigeons (Frost, 1978), area 17 of cat visual
cortex (Hammond, 1981), and in the area MT of primate
visual cortex (Allman, Miezin & McGuinnes, 1985;
Tanaka, Hikosaka, Saito, Yukie, Fukada & Iwai, 1986;
Born & Tootell, 1992; Xiao, Marcar, Raiguel & Orban,
1994). We suggest herein that the behavior of such
neurons corresponds to differential motion filters of the
type required for extraction of 3D shape descriptors from
the optic flow field.

Of greatest relevance to the present discussion are
neurons expressing center—surround interactions in area
MT. This visual area is part of the parietal cortical stream
(Ungerleider & Mishkin, 1982; Livingstone & Hubel,
1988), and it receives weighty projections from primary
visual cortex (area V1) (Ungerleider & Mishkin, 1979)
and from the magnocellular compartments of area V2
(DeYoe & Van Essen, 1985). By comparison with other
cortical visual areas, MT possesses a high proportion of
neurons that are selective for direction and speed of
motion (Zeki, 1974; Albright, 1984). Considerable
evidence indicates that this visual area is a principal
component of the neural substrate for motion processing
resulting in a veridical description of optical flow [see
Albright (1993) for review].

Area MT was implicated in SFM by the apparent loss
of this facility following selective cortical ablation
(Siegel & Andersen, 1987). We have explored the
possibility that the motion antagonism of receptive fields
in area MT may be involved in SFM perception. A
consideration of analytical solutions to the SFM problem,
viewed in the light of neurophysiological data, has led us
to identify response properties of MT neurons that are
ideally suited to 3D surface recovery.

Unlike other work on neurophysiologically plausible
SFM mechanisms, we utilize data about the spatial
profiles of receptive fields in area MT. The study closest
to our vantage point (Droulez & Cornilleau-Perez, 1990)
offered a limited treatment of surface recovery from optic
flow. By contrast, our model provides a rich set of
descriptors for surface form. These descriptors can
subserve the estimation of relative distance, slant, and
curvature. In addition, an early formulation of our model
(Buratas & Albright, 1994) predicted the existence of
receptive fields with oriented inhibitory lobes, which
were subsequently found to be characteristic of many MT
neurons (Xiao, Marcar, Raiguel & Orban, 1994),

The paper is organized in the following way: we begin
by formalizing the physical relationship between 3D
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surface shape and the attendant velocity flow field. We
then develop a simplified treatment of the SFM problem,
in which emphasis is placed upon surface characteriza-
tion using geometric shape descriptors (tilt, slant and
curvature). From an abstract computational perspective,
there is considerable flexibility in the means by which
shape descriptors can be computed. Because our interest
is limited to biologically plausible mechanisms, we have
used known properties of cortical neurons to constrain the
possibilities. To that end, we review the response
properties of motion-sensitive neurons in primate cortical
visual area MT, and we use those properties to define a
set of idealized motion filters for surface characterization.
We commence by considering neurons having radially
symmetric surrounds and we develop differential motion
filters that capture essential features of the neurons. The
subsequent section is dedicated to a discussion of the
computational advantages afforded by oriented receptive
field surrounds, which have recently been discovered to
exist in area MT (Xiao et al., 1994).

We then proceed with a detailed examination of the
properties of the selected motion filters and develop a
model of surface characterization based upon these
operators. Again, we begin with analysis of the
differential-geometric properties of the simpler radially
symmetric filter. We then switch to oriented filters and
discuss computational schemes whereby outputs of these
filters can be combined to render surface orientation and
invariant shape descriptors. The model is compared with
alternative neurophysiologically plausible approaches to
the SFM problem. We close with a demonstration of the
performance of our model when provided with realistic
input.

RELATIVE MOTION AS A CUE FOR RELATIVE
DEPTH

In this section we show that the retinal velocity field
caused by translational displacement of a 3D surface
constitutes a good approximation to the surface function
itself. The zeroth-, first- and second-order structure of the
ensuing velocity vector field for an arbitrary motion of a
smooth surface was analyzed in detail by Koenderink and
van Doorn (1992). In contrast to these authors, in order to
make our arguments clear, we will constraint our analysis
to the ecologically prevalent translational motion. If we
assume an observer fixating a point on the passing
surface, this type of motion can be decomposed into a
translational component tangential to the direction of
gaze, and rotation along the axis perpendicular to the
direction of gaze (see Fig. 1). Later we will argue that the
requirement of eye-tracking can be relaxed without
consequences to our approach. Because, in the case of
translational displacement, only the relative motion
between an observer and the object matters, we will not
distinguish between observer self-motion and object
motion.

The velocity field caused by object—observer displace-
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FIGURE 1. Coordinate system assumed in the model. Translation of an observer (represented by eye at left) with respect to a
surface (R, right) containing the point of ocular fixation (Rg) causes a pattern of retinal motion which can be decomposed into a
rotational component (w) along the axis perpendicular the direction of sight and translation in depth [see equation (4)]. The
retinal image projection is modeled by the fronto-parallel plane X-Y; the Z-axis is perpendicular to the fronto-parallel plane; r
represents a surface positional vector in the coordinate system with the origin moved to the fixation point.

ment can then be expressed in terms of relative depth
z(x,y):

V=—-t—-wxR-Ry)=—-t—wxr, (1)

where w=[w'w" 0] is the effective rotation vector
(superscripts indicate vector components) of a surface
r = [xy,z(xy)]; R is a position vector of a surface point,
Ry =1[0,0,zy] is a position vector of the fixation point;
t = [0,0,£] is a translational component along the z-axis.
(See Fig. 1 for an explanation of the coordinate system.)
The component velocities v =u and v =v of the
velocity field under perspective projection can be
calculated from (see Appendix for derivation):

Wz —xtf — wixy + w¥x?
H=——— = .
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Here we assume z,>» z, since, under natural viewing
conditions, the distance to surface z, is typically much
larger than distance variation on the surface of interest;
this assumption permits replacement of z, + z by z,.

For an observer undergoing an arbitrary translation, the
effective rotation vector is perpendicular to the direction
of eye fixation. Without loss of generality, we can assume
that w =[0,w",0] = [0,w,0], i.e. the observer is moving
tangentially to ground. This assumption corresponds to

rotation of the coordinate system around the z-axis (i.c.
the axis of gaze) such that the y-axis becomes parallel to
the vector w. The generality of our approach is supported
by the fact that the representation of directions in area
MT is approximately isotropic (Albright, Desimone &
Gross, 1984), and we can always select a subset of
orthogonally tuned neurons to represent velocity compo-
nents corresponding to the rotateq coordinate axes.
Equation (2) then reduces to:

Wz —xf 4wyt
u=— -
20 25
: : 3
—yt‘ + W‘X)’ ( )
p—m -
2y

When we take up the topic of specific motion operators
(see below), it will be convenient to neglect the second-
order term of equation (3). which is small compared to
1/z, in the vicinity of the fixation peint (x,y < zy). Thus:

U= —wz/zy+ ()(l/zﬁ) ~ —z(yy) - wizg, v=0(1 /2(2)).

“

It is readily apparent from equation (4) that the
horizontal velocity component u is proportional to
relative distance z(x,v). The latter can thus be recovered
from the unidirectional velocity field up to the scaling
factor zy/w. This relation permits us to treat optic flow as
a scalar direction—an approximation that represents the
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FIGURE 2. Optical flow produced by textured surfaces: (a) shows four frames of the movie of a rotating striped teapot used to

create the flow field (b), which was calculated using an algorithm developed by Nagel (1987); (c) gray-scale images of

horizontal (left) and vertical (right) components of the optic flow. Note that information about depth is found almost exclusively
in the horizontal component.

retinal velocity field rather well within the central 20 deg.
This point is emphasized in Fig. 2, which illustrates
relative depth estimation for a realistic dynamic scene (a
rotating teapot). Four frames of the rotating teapot are
shown in Fig. 2(a). Teapot surface texture induces a flow
field supporting dense sampling, which is essential for
detecting small differences in velocitics of neighboring
surface points [Fig. 2(b)]. The flow field has been
computed using a multi-scale velocity extraction algo-
rithm developed by Nagel (1987). The v'=w and +* =v
components of the velocity flow field are shown as gray-
scale images in Fig. 2(c). Despite the deformation of the
velocity field due to perspective projection, the compo-
nent u, which is perpendicular to the vector of effective
rotation w, carries nearly all shape-related information.
By contrast, the v component is small and noisy, owing to
imperfect estimation of the velocity field. Discarding the
second-order terms in equation (4) cffectively discounts
relative depth information contained in the expansion/
contraction component of the velocity field, caused by
approaching/receding of a surface (velocity component
t.). This step can be justified by the fact that human
observers do not appear to use this component in
inferring shapes of moving objects (Hoffman, 1982;
Ullman, 1979).

REDEFINING THE SHAPE-FROM-MOTION (SFM)
PROBLEM

The shape-from-motion problem has been couched
traditionally as a problem of recovering the 3D positions
of features on the surface of an object. given geometric
constraints provided by multiple, movement-related. 2D

snapshots of the object (e.g. Ullman, 1979). While
satisfactory in a formal computational sense, this
approach fails to draw upon the power of spatio-
temporally oriented filters in mammalian visual cortex,
which compute motion energy in a continuous way
(Adelson & Bergen, 1986). An alternative approach to
the SFM problem (Longuet-Higgins & Prazdny, 1980;
Koenderink & van Doorn, 1992), which co-opts the
neurobiological legacy, relies instead upon the instanta-
neous values of the retinal velocity vector field. Retinal
velocity field differentials, caused by differential motion
of surface features, are used to compute standard
descriptors  for 3D shape. This approach appears
neurobiologically sound, as the requisite local measure-
ments of image velocity are known to be represented at
an early cortical stage. It is, moreover, consistent with
evidence indicating that human shape-from-motion
perception involves a process of surface interpolation
between moving surface features (e.g. Hussain, Treue &
Anderson, 1989; Treue, Andersen, Ando & Hildredth,
1995). In light of these considerations, we find it useful to
view the SFM problem as one of characterizing the
interpolated surface. Our objective in this section is to
formalize the derivation of geometric descriptors that can
be used for surface characterization.

In order to characterize a visible surface one must
accommodate both intrinsic surface properties and the
spatial relationship between surface and observer. For a
smoothly varying surface, these properties/relationships
can be adequately represented by knowledge of:

(1) distance of the surface relative to the observer’s plane
of ocular fixation; (2) oricntation of the surface relative to
the observer (tilt and slant); and (3) surface curvature
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FIGURE 3. Four types of RF surrounds encountered in visual area MT:
(a) synergistic surround: responses increase with increasing diameter
of textured moving field [based on data published in Born and Tootell
(1992)]; (b) V(U)-shaped speed tuning for background texture moving
in the same direction. The tuning curve was mapped using a bar
moving through the CRF at optimal velocity. Responses are plotted in
units relative to the CRF response elicited without the textured
background; (c) monotonically increasing; and (d) monotonically
decreasing surround tuning curves; also compare the prediction in Fig.
5d with Fig. 4 [(b}~(d) are based on data published in Tanaka er al.
(1986)]. S/C. surround/center ratio.

(convexity vs concavity). In concert, these surface
descriptors provide the 3D information needed for
navigation and object manipulation.

The ‘relative depth’ of a surface can be defined as a
smooth function of a positional vector z(xy)=
k- (R — Ry) expressed relative to the point of fixation
R, [see equation (1); Fig. 1]; k is a unit vector in the
direction of the z-axis. It contains implicit information
about all higher-order descriptors of the surface shape.

Both tilt (r) and slant () can be recovered from the
gradient vector of the surface function Vz = [z,, zy]T:

¥ = arctan (|Vz]) = arctan(, /22 + z§>,

T = s - arctan (z,/z,). (5)

Subscripts indicate partial derivatives of the relative
depth-function z(x,y) and the value of s = £1 depends on
the quadrant to which the gradient vector points.

From differential geometry we know that the normal
curvature k(¢) in the direction ¢ is the local measure of
surface shape, which is invariant with respect to
translation and rotation of the coordinate system.
Rotating the coordinate system such that the x-axis
becomes aligned with direction ¢, allows surface
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curvature to be expressed in terms of the partial first-
and second-order derivatives z;, z;; in a rather simple way
(see Appendix for justification):

K(p = 0) = = )
91tz +zm+2E)

Knowledge of Gaussian curvature kg = KminKmax (Kmin
and Kk, are the two principal normal curvatures) allows
a means to discern hyperbolic surfaces (k;<0) from
parabolic (k> 0) and cylindrical (x4 = 0) surfaces. It is
also useful to know the mean curvature K = (Kin + Kmax)/
2, whose sign distinguishes parabolic convex surfaces
(x > 0) from parabolic concave surfaces (x < 0). Because
the projected curvature increases with distance of a
surface from an observer, it is constructive to separate the
scale-invariant shape descriptor @ =(2/n) arctan [2x /
(Kmax — Kmin)] from the scale-variant shape component
o= (Knax + Konin) quantifying the magnitude of cur-
vature, as introduced by Koenderink and van Doorn
(1992) [see also Dijkstra (1994), p. 104].

First- and second-order partial derivatives of a surface
function are thus sufficient to compute surface curvature
and orientation. Since the retinal velocity field caused by
an object undergoing displacement relative to an observer
is, to a first approximation, proportional to the surface
function [equation (4)], differentiation of the surface can
be replaced by differentiation of the velocity field
components, with the constraint that the scaling factor
and the sign of relative depth must be recovered using
other visual cues or modalities.

NEURONAL ELEMENTS FOR DIFFERENTIAL
MOTION DETECTION

Two decades ago, Nakayama and Loomis (1974)
proposed that direction-tuned neurons with antagonistic
motion surrounds could provide a mechanism for the
extraction of relative depth from the velocity flow field.
This prediction was supported by the subsequent
discovery of neurons with antagonistic motion surrounds
in the visual systems of many species. Of particular
interest for our theoretical formulation of the SFM
problem are directionally tuned neurons in primate visual
area MT. In designing optimal differential motion filters
for the computation of 3D surface shape, we have
adhered to biological constraints given by the known
response properties of these neurons. Before describing
the differential motion filters, we will briefly review the
relevant neurophysiological data.

Three types of RF center—surround interaction in area
MT

Selectivity for direction and speed of motion are salient
features of the vast majority of neurons in visual area MT
of the primate cerebral cortex (Zeki, 1974; Maunsell &
Van Essen, 1983; Albright, 1984; Rodman & Albright,
1987). In addition to these basic selectivities, which are
characteristic of responses elicited by visual stimulation
of the CRF, the responses of many MT neurons can be
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FIGURE 4. Variations in surround velocity tuning for monotonically
decreasing tuning type, as observed by Lagae et al. (1989): (a) data
from a single MT neuron tested with surround velocities including
direction reversal. Response increases when the surround texture
moves in the direction opposite to the central stimulus. Spontaneous
activity level ~ 2 spikes/sec; and (b) data for another cell, tested under
the same conditions, and showing no modulation by negative surround
motion. Spontaneous activity level = 8 spikes/sec. Variation across
these tuning curves can be formalized in terms of bias [bias < 0 for
cell (a), and >0 for cell (b)] and ‘temperature’ T [which controls
the slope of the curve, see equation (9)]. Based on data published in
Lagae et al. (1989).

modulated by appropriate simultaneous stimulation of a
larger surrounding region of the visual field, known as the
‘non-classical’ (Allman et al., 1985; Tanaka et al., 1986)
or SRF. By definition, stimulation of the surround alone
is incapable of eliciting a neuronal response; the function
of the surround appears to be exclusively modulatory in
nature. Such modulatory surrounds typically abut the
CRF and can extend over a radius up to 7-10 times larger
than the radius of CRF (Allman et al., 1985). An MT
neuron may possess one of several different types of
modulatory surrounds. We will argue that each plays a
critical role in the extraction of 3D surface shape from the
retinal velocity field.

Receptive field surrounds can be divided into antag-
onistic and synergistic subtypes (Fig. 3) (Born & Tootell,
1992). Roughly speaking, antagonistic SRF activation
will suppress the normal CRF response when the SRF
and CRF are stimulated with a moving pattern of the
same direction and speed. Likewise, the normal CRF
response will be enhanced when the SRF and CRF are
stimulated with moving patterns of different directions
and speeds. For example, the response of a typical cell
possessing an antagonistic SRF and preferring rightward
CRF motion may be enhanced when the SRF is
stimulated with motion in the opposing (leftward)
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direction, and suppressed when the SRF is stimulated
with motion in the same (rightward) direction. Further-
more, antagonistic SRFs have been shown to be smoothly
tuned for direction, with the preferred direction typically
opposing that of the CRF (Allman et al., 1985). The
modulatory behavior of the synergistic SRF is precisely
the converse, i.e. the response to motion in the CRF is
facilitated by the same motion in the SRF.

In addition, it was found that antagonistic SRFs can be
subdivided into several subtypes according to their speed
tuning curves. For example, 44% of neurons recorded in
the owl monkey (Aotus trivirgatus) (Allman et al., 1985)
possessed antagonistic SRFs. One third of those exhibited
V(or U)-shaped tuning curves [Fig. 3(b)]. These neurons
were suppressed maximally by SRF motion of the same
velocity as that in the central RF; decreasing or
increasing SRF speed had disinhibitory effects. They
thus appeared to favor speed differences between center
and surround, regardless of the sign of these differences.
For the remaining sample of MT neurons, inhibition
decreased with background speed (Allman et al., 1985).
A complementary study by Tanaka et al (1986)
performed on the old-world Japanese macaque (Macaca
fuscata), found MT neurons with both: (1) antagonistic
SRFs tuned for speed in a V(U)-shaped fashion (50% of
sample) [Fig. 3(b)]; and (2) monotonically increasing
velocity tuning curves [Fig. 3(c)].

In addition, Tanaka et al. (1986) reported neurons with
monotonically decreasing speed tuning curves [Fig.
3(d)]. Although these authors used only preferred motion
in the CRF when characterizing such neurons, it seems
likely that they correspond to those neurons that are
facilitated by opposing motion in surrounds (Allman et
al., 1985). This idea can be visualized as a smooth
extension of the surround—-modulation speed tuning curve
into the domain of negative speeds. Our argument is
supported by recent experiments that employed SRF
stimuli moving both in the direction of CRF stimuli as
well as in the opposite direction (Lagae, Gulyas, Raiguel,
& Orban, 1989). It was found that a subset of MT neurons
[‘antiphase conditionally direction selective’ neurons,
Lagae et al., (1989)] had monotonically decreasing speed
tuning when surround direction was the same as in the
CREF, but a surround stimulus moving in the null direction
caused a substantial facilitation of response compared to
the condition of central stimulation only [Fig. 4(a,b)].
This type of surround tuning is consistent with the
opponent surround cells hypothesized by Nakayama and
Loomis (1974) and reported by Allman et al. (1985),
which are facilitated by opposing surround motion.
Neurons with monotonically tuned SRFs are sensitive
to a signed speed difference and the magnitude of
modulation of response by SRF is approximately
proportional to the speed difference. This observation
underlies the model proposed herein.

In summary, the center—surround interactions of RFs in
area MT can be broadly classified as synergistic or
antagonistic. Antagonistic SRFs can be further subdi-
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FIGURE 5. Comparison of data and model velocity tuning curves for center—surround interaction. Left column: data illustrating
types of center—surround interactions seen in MT by Tanaka et al. (1986) (replotted from Fig. 3b—d). Right column: model
tuning curves illustrating types of center—surround interaction produced by equations (8b) and (8¢).

vided into those possessing either V-shaped or monotonic
(increasing and decreasing) velocity tuning.

CONSTRUCTING RADIALLY SYMMETRICAL
DIFFERENTIAL MOTION FILTERS

Our goal in this section is to identify a basis set of
differential motion filters that can be used to compute
descriptors of 3D surface geometry. To gain biological
plausibility, the specific choice of filter properties has
been inspired by the differential-motion sensitivities of
MT neurons (described above). Only the receptive field
surrounds that are capable of eliciting suppressive
modulation are consistent with the type of differential
motion detection needed for computation of 3D surface
shape. For completeness, however, we will also treat
synergistic surrounds. In addition, currently available
data (Lagae et al., 1989; Born & Tootell, 1993) suggest
that the modulatory influence of SRF on CRF activation
is additive in nature (i.e. speed tuning in the CRF is not
affected by stimulation in SRF), and we will employ this

constraint in the design of idealized differential motion
detectors.

For clarity of exposition we will exploit the fact that
the broad, cosine-like direction tuning curve of the
typical MT neuron betrays a simple relationship between
stimulus motion and neuronal response. Specifically, the
response of a neuron i to a stimulus in the CRF can be
expressed as the inner product between the actual
velocity vector V of a stimulus feature projecting to the
unit vector representing a neuron’s preferred direction of
motion m,,. (Zhang, Sereno & Sereno, 1993):

u; = pref © V,' = ‘V,' COS ((ppref - (pv)s (7)

where @,.ris the preferred direction of a neuron and ¢, is
the direction of the stimulus. This simplified representa-
tion can be justified within any linearly approximated
part of the speed tuning function. We also assume that a
veridical representation of the retinally projected velocity
vector field V(x,y) is available in area MT. This
assumption rests on the evidence that many MT neurons
appear to represent true velocity, rather than components
of local motion perpendicular to a moving edge
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FIGURE 6. (a) Spatial profiles of kernels of radially symmetrical ‘fuzzy’ differential operators. The zeroth-order operator L

only blurs, while the second-order operators can enhance motion contrast isotropically. (b) Kernels of oriented differential

operators: O,, [or O»(n/2)] calculates the blurred second-order derivative along the y-axis, Oy, [or 0,(0)] calculates the blurred

first-order derivative along the x-axis. The righthand kernel (X) can yield the estimate of a mixed second-order derivative in x
and y directions.

(Movshon, Adelson, Gizzi & Newsome, 1985; Rodman
& Albright, 1987).

Discrete differential-motion filters

[dealization of the properties of MT neurons relevant
to 3D surface characterization yields motion filters of
three critical orders. We propose that these filters
function in the computation of 3D surface descriptors
for: (1) distance relative to point of ocular fixation;
(2) surface orientation; and (3) surface curvature. The
properties of these filters can be captured by equations
involving summation of inputs over discretized center
and surround receptive field subregions.

The zeroth-order filter, characterized by synergistic
center—surround interactions, serves to compute the
distance of the surface relative to the distance of the
point of ocular fixation. This filter class can be modeled
by:

Ih=3S Z[u( + ui(i)] »,

ieN

(8a)

where u, (k = c, s) are projections of the velocity field to
the direction perpendicular to the vector of effective
rotation w [see equation (6)]; here, and in subsequent
filter equations (8b,c) and (10a—), u(i)=0 if u. =0 and

u,=n,,. Viifu. # 0, as required by the constraint that
receptive field surrounds must be ‘silent’; the summation
is over surround neighborhood N of u,. The sigmoidal
activation function:

S(x) = [tanh(T - x + b) + 1]/2, (9)

imposes the bounds for neuronal response 0 < S(x) < 1.
The coefficient T controls the slope of the sigmoidal
function and b is a bias term determining the activation
threshold value.

The first-order filter, characterized by V(U)-shaped
antagonistic surround tuning [Fig. 3(b)], serves to
compute the orientation of the surface relative to the
observer (i.e. tilt and slant). This filter class can be
modeled by applying a squaring nonlinearity:

L=S8Y [ue — u(i))?

(N

(8b)

The discrete equation of this form satisfies the constraint
that surround inhibition is maximal when the speeds in
the center and surround are equal: u,. = u,.

The second-order filter, characterized by both mono-
tonically ascending and descending tuning curves for
surround antagonism [Fig. 3(c,d)], serves to compute
surface curvature. This filter class can be expressed in
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terms of straightforward summation of the speed
difference between center and surround:

5 =59 & [u — u(i)) (8¢)

ieN

The [ filter responds to convex surfaces, and is silent
for concave surfaces, while /5, conversely, detects
concavities of surfaces. The /5 filter property of
facilitation by a surround stimulus moving in the
direction opposite to the center stimulus can be achieved
by appropriate choice of the bias term b in the sigmoidal
function. In equations (8b) and (8c) we choose the slopes
of speed tuning curves in the CRF to be equal to those
in the surround, which is essential for obtaining balanced
filters. The tuning curves for monotonically decreasing
(I2) SRF speed tuning [Fig. 4(a,b); Lagae et al, 1989]
suggest that neither bias b (which determines the position
of sigmoidal bending of the activation function S), nor
tuning-slope T are fixed across MT neurons allowing
some flexibility in selecting these parameters for our
differential motion filters.

Figure 5 compares the responses of our filters to their
biological correlates. Note that, although no curve-fitting
has been performed, there is strong qualitative agreement
between the neurophysiological data [Fig. 5(a—c)] and the
behavior of equations (8b,¢) [Fig. 5(d-f)]. We have not
presented simulated velocity tuning for equation (8a)
because appropriate neurophysiological data are unavail-
able for comparison. Qualitatively, however, the tuning
curve for equation (8a) is similar to that for L3, but
shifted upwards (+1) to reflect facilitation.

Continuous differential-motion filters

Although they capture the essential properties of
center—surround interactions that we wish to promote,
the discrete nature of the filters described above does not
reflect realistic receptive field spatial profiles. We will
now substitute continuous analogs, which are more
consistent with known biological constraints.

We assume, first of all, that synaptic weights for both
center and surround receptive fields decline as a Gaussian
function G(o) of distance from the CRF center and that o
is different for center and surround: ¢, < o,. Thus, by
applying convolution with Gaussians, equations (8a) and
(8c) can be rewritten:

Lo(i, )) = S{G(a )xu(i,j) + G(o)*u(l, )}, (10a)
L3(i.j) = S {£ [Glo)=u(i.j) — G(o,)*u(i,j)]}.
(10¢)

(see Appendix for explication of notation). The spatial
profiles of the operator kernels are shown in Fig. 6(a).
The continuous nonlinear L, filter can be defined
if equivalence to /; [equation (8b)] is observed only
up to the second-order term of the power series for
u(i, j):

L(0)) = S{G (o)) + Glo)w(1, ) —

a[Glo) (i, DIG(a)xuli, N} (10b)
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FIGURE 7. Application of the model MT filters to a realistic dynamic
scene: (a) the response of [, filter to the horizontal component of the
velocity field, is followed by responses of /; and /; filters [(b) and (c),
respectively}. The iso-depth and iso-slant gray-level values in (a) and
(b) are consistent with the shape of the teapot. The image in panel (b)
contains peak values along the upper edge, which corresponds to
maximal slant of the teapot in this area. The response in (c) is
calculated from both convex and concave operators (Iy — > ) to
convey both the positive and negative components of the second-order
response. The noise in the image is attributable to the coarse texture of
the velocity field inducing surface.

u’(i,j) corresponds to full-wave rectification [formerly
used to model response properties of complex neurons in
area V1 (Spitzer & Hochstein, 1985)]. Note that the form
of the equation is that of an expanded quadratic binomial;
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= 2/Erf2(%) is the balancing constant, and Erf( ) is
the error function. The balancing constant secures the
zero-response to a uniform velocity field. It depends on
integration limits { — nog,no} for convolution integrals.
The spatial profiles of the Ly and L, filters are illustrated
in Fig. 6(a) (L, is not displayed because of the complexity
associated with the nonlinearity; however the spatial
profile of the center and surround components of this
filter is identical to that for L,).

Motion filter refinements: oriented receptive field sur-
rounds

Following their discovery, it was assumed that RF
surrounds in area MT were radially symmetric about the
CRF. More recently, a deliberate test of this assumption
in rhesus monkeys has revealed that the majority of
antagonistic surrounds in area MT are not radially
symmetric; rather they appear to be composed of either
axially symmetric inhibitory lobes (35%) or a single
elongated inhibitory region (60%) (Xiao et al., 1994). In
addition, the CRFs themselves appear to be elongated in
many cases, thus presenting a center—surround sensitivity
and spatial interaction profile that is striking similar to
receptive field profiles in area V1. (This structural
similarity suggests certain functional parallels between
the operations carried out on velocity flow fields in area
MT and the operations carried out on distributions of
luminance in V1—a possibility that will be explored
more fully in the Discussion.)

Oriented receptive fields with inhibitory lobes are
known to correspond to fuzzy differential operators (e.g.
Werkhoven & Koenderink, 1990). The term ‘fuzzy’
refers to the blurring (or low-pass filtering) of an image
by differential filters. It is common practice to character-
ize these RFs in terms of Hermite polynomials, i.e.,
derivatives of the Gaussian function (Beitas & Kirvelis,
1987; Koenderink & van Doorn, 1987). We have chosen
a less restrictive approach, however, that does not
automatically place constraints on the widths of ex-
citatory and inhibitory regions. This approach renders
greater conformity with neurophysiological evidence.

For the discrete case of oriented filters, the general
form of equations (8a—) is preserved; only the
neighborhood of summation is changed from radially to
axially symmetric (second-order differential) or anti-
symmetric (first-order differential) (Bura¢as & Albright,
1994). The continuous second-order operators can be
defined as a difference of radially symmetrical and
elongated Gaussians. For example, for differentiation in
the direction of the y-axis (¢ = 7/2) we have:

Oi,j, 1/2) = S{[G(04,0,) — G(a,0)]%(i, )},

(see Fig. 6(b) for examples of spatial profiles). Inspired
by neurophysiological evidence (Xiao et al., 1994), we
assume that these oriented filters, as well as the ones
described below, are defined for every direction of
differentiation €[ —n,n]. Likewise, by analogy with
equation (10c), the axially symmetric (even) first-order
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differential operator (for differentiation in the direction of
the x-axis, ¢ = 0) is:

05(i, j) = S{G(0,,0,)xu’(i, j) + G(04,0)xu*(i,})
— SS[G(0c05)uli DIG(o5,0)+u(i, )]}

Here ¢y is the balancing constant. The anti-symmetric
first-order operators can be modeled by a difference of
2D Gaussians with shifted maxima. For example,
differentiation in the direction of the x-axis is:

O(I)i(i’j) = S{i[G(Uc‘sac)*u(i + O-C’j) -
G(Gcaac)*u(i - O'C,j)]}-

The sign + indicates that, to support rectification by the
sigmoidal function, we need to postulate filters that
independently transfer the positive and negative values.
The distance between the peaks of the two Gaussian
components of 2 g, is set within a range of physiologi-
cally plausible values. Although standard deviations in
the two orthogonal directions are equal in the equation,
they may assume different values. Although not yet
proven experimentally, the distinction between the even
and odd first-order differential operators is important for
computing the curvature of moving surfaces, as will be
shown below. Furthermore, although we have described
differential motion operators oriented only in cardinal
directions, they can be defined for any direction of
differentiation. Below we will argue that these operators
function as fuzzy directional derivatives of velocity field
components.

FILTER PROPERTIES AND PERFORMANCE

To summarize, three orders of differential motion
filters have been defined for the purpose of computing
descriptors of 3D surface geometry. On the one hand,
their design incorporates constraints dictated by the
response properties of cortical neurons that encode
differential motion. On the other hand, the lack of data
on certain parameters has left us some freedom to choose
values that optimize performance of our model filters, but
simultaneously conform to a principle of maximal
simplicity. For example, when analyzing response
properties of the filters, we choose T and b such, that
the range of inputs to the filters falls approximately
within the linear portion of the sigmoidal function
[equation (9)].

When presented with a velocity flow field, the zeroth-
order filter is expected to ‘respond’ to velocity compo-
nents that reflect the relative distance between the source
surface and the plane of ocular fixation. The first-order
filter is expected to respond to velocity components that
reflect the orientation (tilt and slant) of the surface
relative to the observer. The second-order filter is
expected to respond to velocity components that reflect
the degree and sign of surface curvature (concave vs
convex). In concert, these filters can make a significant
contribution to the characterization of surface geometry.
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FIGURE 8. Responses of oriented filters to the flow field induced by
the teapot of Fig 2: (a) and (b): responses of filters differentiating in the
x- and y-directions. The responses from both positive and negative
filters are pooled [OF *(0)»-0F  (0) in (a) and OV (/20" (r/2) in
(b)]. These responses peak where slant is maximal for the direction
preferred by the filters; (¢) and (d): responses of second-order oriented

filters. Note that the response of Oa, [or Oa(0)] is noisier than that of

Os, [or Ox(1/2)] due to vertical orientation of texture.

(In order to obtain a reliable response from any of these
filters, it is, of course, essential that the source surface
possesses sufficiently dense surface texture—a constraint
that is generally fulfilled by the properties of natural
surfaces).

We will now proceed with a formal and detailed
description of the properties of each of the motion filters,
followed by an illustration of their application to (sur-)
realistic visual input.

Computing 3D surface parameters

In further development of the radially symmetric
motion operators, we will exploit only the simplified
relation for the velocity flow field given in equation (4).
Expanding z(x,y), from equation (4), into a power series
around an arbitrary point and truncating above the
second-order term yields:

W

ux.y) = — ]ZX-V):
(x.y) - (x.y, (11)
(ax® 4+ by” + cxy + dx + ey) and v(x.y) = 0.

w

20

where a=2./2, b=2,/2, c=2z,, d=z, e=z, are
expansion coefficients (see Appendix for elaboration of
relations between the surface representation and velocity
field).

Operations of radially symmetric filters

Zeroth-order filter. Application of Ly to u(x,y) removes
high spatial frequencies, but otherwise the result does not
differ from wu(x,y}—i.e. Lyxu covaries with the lower
frequencies of u(x,y). Thus this zeroth-order filter blurs
the velocity field, effectively attenuating noise caused by
sparsely distributed features. This point can be scen by
comparing the visual input [Fig. 2(c), left panel]—the 2D
retinal velocity field u(x,y) elicited by surface displace-
ment—with the output of L, [Fig. 7(a)—a representation
of the output of this and the following filters, shown in
Figs 7 and 8, can be interpreted as firing-rate maps for a
sheet of neurons containing a single filter type]. The
resulting low-pass filtered ‘neural image’ conveys the
relative-depth map of the 3D surface more reliably than
does the unfiltered pattern of the horizontal velocity
component.

First-order filter. When applied to planar stimuli
up(x.yy = (dx + ey)®, it can be shown by direct
evaluation of the convolution integral that L, exhibits
properties of a squared first-order differential operator:

5 A H, W
Li*xuy x —(d-+¢)-Cilo. —a7) o (12)

=

RS - 2 :
~D%,-C\(0° — a7} -

4

R

(
where D’ = (%)2 ~ (#\,)3 is the first-order symmetric
differential operator, commonly used in robot vision
(Horn, 1986); Cl(o'f — @3)is a function of 6, o, and does
not depend on properties of stimulus u,. The tilde sign in
Z, indicates the fact that the estimate of the differential
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refers to the low-passed version of the
surface function. Owing to its 1sotroplc nature, L extracts
only the scalar value KC11Vz| (the weighted squared
norm of the gradient vector), which bears a direct
relationship to the slant W of the moving surface. The
(blurred version of the) latter can be directly computed
by substituting the output of L, in equation (5): ¥ =
arctanwz" /L1 * up. Note that the proportionality (oc )
in equatlons (12) and (13) holds within the linear portion
of the sigmoidal activation function S.

An interesting property of this filter is that it is
invariant with respect to the direction of tilt of the
inducing surface. Indeed, when applied to the velocity
field arising from our rotating teapot, L, peaks at the
locations of maximal slant of the teapot surface [Fig.
7(b)]—i.e. close to the boundary contour of the teapot—
regardless of surface orientation. Closer examination of
Fig. 7(b) reveals that the filter response is greatest near
the top of the teapot image, due to the maximal slant in
that region. Absence of response to the velocity field in
the central region of the teapot correlates correctly with
the near-zero slant of the teapot surface.

Second-order filter. Application of L, to u(x,y) from
equation (11) yields:

w

_(2a+2b)~Cz(0?—02)'20 T a3)

Lo xuox p

V% - Cy(0? — 02) - v,
20

As expected, L, exhibits properties of the second-order
space-differential operator—Laplacian. C;(0? — ¢2) is a
constant that depends only upon the widths of center and
surround Gaussians.

The output of L, is related to surface curvature in a
non-trivial way. It can be shown that mean curvature can
be computed from:

B Viz 4+ Zxe§ + 222 (1)
k= ,
21+ D2+ 222} )V1 + D%z

(see Appendix for derivation). At points of singularity
z, =z, =0—1.e. where the tangent plane is perpendicular
to the direction of gaze, equation (14) reduces to:

(15)

Thus, at these points of singularity, the output of L, is
proportional to the mean curvature of the velocity-field-
inducing surface: K o sLLy * u (recall that the tilde
denotes the ‘blurred’ estlmate of the mean curvature).
The second-order analysis of the flow field induced by the
rotating teapot is illustrated in Fig. 7(c). Large response
troughs are traceable to the noisy estimate of the velocity
field [Fig. 2(c)], which is, in turn, tied to surface texture
density.

We previously imposed the constraint that the observer
must track a single point on the surface of a moving
object. However, eye rotation caused by tracking of a
moving surface serves to compensate the transversal
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component of translational motion. It should be apparent
that both L, and L, filters discard the constant transversal
component of optical flow. This fact was previously
noted by Carman (1991), who suggested that the primary
role of radially symmetric antagonistic surrounds in area
MT may be to discard the full-field motion component. It
follows that we can lift the eye-tracking constraint
without altering the conclusions of the previous section.

Extracting vector quantities

Equations (12) and (13) document the fact that only
scalar quantities can be extracted by the radially
symmetric operators described here. A proper description
of surfaces requires vector quantities, however, which
involve directional derivatives, like the gradient [zx,zy]T.
We previously noted that this requirement could be
fulfilled by MT neurons with oriented receptive fields and
non-uniform surrounds, and we predicted the existence of
such neurons (Buratas & Albright, 1994). The recent
discovery of MT neurons with these critical properties
(Xiao et al., 1994) permits us to complete our treatment
of the shape-from-motion computation, by justifying the
inclusion of directional differential operators.

Oriented filters, analogous to the ones described above,
yield responses proportional to ‘fuzzy’ directional first-
and second-order derivatives. For example, as when such
filters are applied to a function f{(x,y) in the direction of
the x (¢ = 0) axis: O3 (O)*f(x,y) oC fr, O2(0)xf(x,y) oC fix
and Of(0)f(x,y) oc f2. Again, the estimate of the
derivative is blurred. The cause of this blurring becomes
evident by recalling that the differentiation of a blurred
image corresponds to convolving the original image with
a blurred kernel of a differential operator.

Since the retinal velocity field relates to the surface
function in a simple way, as stated by equation (4) for the
first-order approximation, we can readily obtain the
relation between the outputs of the oriented differential-
motion filters and the surfaces that induce optical-flow.
From equations (A3) and (A4) (Appendix) we deduce:

- 2y . 20 0
x — — Uy ——0,(0 3
z X = 1(0) x u
. 20 - 20 0
=—-—u, x ——O(r/2
Zy T 1(7/2) x u, (16a)
5 z .,
zf:——woz ioc——szOl(O)*u.

Here O9(0) indicates the response pooled over both
positive and negative asymmetrical first-order oriented
differential operators O$*(0) and O (0) in direction
¢ = 0 (tilde again denotes that the operators yield a low-
pass filtered estimate of derivatives). Simulated re-
sponses of these operators to the velocity field induced
by our rotating teapot are shown in Fig. 8(a,b). One can
see that the responses of these operators peak for surfaces
with high slant values tilted in the direction of
differentiation.
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FIGURE 9. Gradient vector field calculated for the teapot surface from a set of orthogonal oriented differential-motion filters of
the type developed in our model. Vectors correctly approximate the overall surface orientation. Note that the estimate is
spatially blurred by low-pass filtering of convolution kernels.

Accordingly, the second-order derivatives are ex-
tracted using the second-order O-filters:

o = — Dy x — 205(0) + u,
w w
- 2 . <o
By = =l X —;0?(71‘/2) * U, (16b)
. 2y . 20
v = —— iy X ——X(0
Zy, oy X~ ) *u

(here the values in parentheses near the O symbol
indicate the direction of differentiation, i.e., O stands for
differentiation in the direction of the x-axis, and n/2 the
direction of the y-axis). Figure 8(c,d) depicts an example
of the outputs of two oriented second-order filters. The
‘response’ of the O,(0) filter is corrupted by noise arising
from discontinuitics of tcapot texture in the horizontal
direction [Fig. 8(c)]. Since the velocity field in the
vertical direction is sampled more densely, the response
of the Oy(n/2) filter represents the second-order differ-
ential more faithfully. The bottom expression in equation
(16b) was motivated by the recent finding (Xiao et al.,
1994) that some cells in area MT appear to possess
receptive fields with spatial profiles that are consistent
with the mixed differential operator X [see Fig. 6(b),
righthand panel, for a spatial profile of the X kernel]. As
indicated in the Appendix [equation (A4), bottom row,
center column], computation of this derivative allows
direct estimation of the rate of effective rotation of the
object, provided that the distance to the surface is known.

Computations of curvature are greatly simplified if
curvature is defined by directions of maximal and

minimal curvatures [which are always orthogonal; see
Appendix, equations (A1), (A2) for details], rather than
as a combination of derivatives in cardinal directions. For
this reason, it is advantageous to employ oriented
differential operators that are defined over the full range
of directions of differentiation ¢ € {0,2 n}. This distribu-
tion of differential motion filters seems to hold for the
primate visual system: neurophysiological evidence
demonstrates a lack of correlation in area MT between
preferred direction of motion and orientation of receptive
field profile (Xiao er al., 1994), indicating the potential
for differentiation in any spatial direction for every
preferred direction of motion.

The MT-like filters L and L, although reconstructable
from oriented filters, may be an important shortcut in
shape-from-motion computation, since the magnitudes
proportional to their outputs show up in formulas for
curvature. The normal surface curvature can be readily
extracted using combinations of oriented and symme-
trical filters. For example, the normal curvature in a
direction of angle ¢ can be estimated from:

Loy

(1+D%)'* (1 +2)

K()

(17)
aOs(p) *u

T (L AL+ )P A0 )

here a8 and y are constants independent of stimulus
properties (they absorb w and z;), = denotes convolution.
The scale-invariant shape index, introduced earlier,
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can also be described using outputs of our filters
(Koenderink & van Doorn, 1992):

2 Zoo + Zoo) + (ZonZZ + Zp02’
Q:—arctan(w o0) (20025 + 200Z,,)

. (18)
7 @y — 200) + (Zpp2] — 26922)

Here the directional derivatives in direction of the two
normal principal curvatures are employed. Inserting the
equations for partial derivatives from (15a) and (15b) will
yield the desired expression.

PUTTING IT ALL TOGETHER

Thus far we have demonstrated that the filter
characteristics of MT neurons have computational
properties that are potentially useful for extracting 3D
surface shape from optical flow. Critical as this potential
contribution of MT may be, it should be clear that there is
no evidence to support a proposal that MT neurons yield
a complete motion-derived description of shape invar-
iants. Our novel contribution is simply a demonstration
that MT provides differential motion operators capable
of extracting shape-from-motion; its operations do not
complete the object-centered shape description. We
suggest that the solution to the SFM problem may be
completed in another, MT recipient, cortical area (e.g.
areas V4, MST, FST, VIP), although there exists no
unequivocal evidence on this point.

In the remainder of this section we briefly sketch a
scheme for implementing the computations of differen-
tial-geometric descriptors by interactions in a set of
neural networks. The co-existence of differential motion
operators of several orders in a single visual area suggests
that both first-order surface descriptors (tilt and slant) are
computed in parallel with the second-order descriptors
(e.g. curvature or scale-invariant analogue of curvature).
Surface slant can be readily estimated from the filter L,
as suggested in equation (5). Interestingly, since the
arctangent function is identical to the hyperbolic tangent
below the fifth-order term of power series expansion, the
former function can be approximated by our sigmoidal
transfer function S of equation (9) (see Appendix for
details). The tilt can be computed by performing a cross-
orientation search for the maximally responding first-
order oriented filter O, at every spatial location. This is
readily implementable by a winner-take-all neural net-
work allowing competition between all differently
oriented first-order filters. The orientation of the ‘win-
ning’ filter betrays the direction of the tilt. The utility of
this approach is illustrated by the example in Fig. 9,
which shows an estimate of the gradient vector (with
negative sign) for a surface function. The estimate was
calculated from the horizontal component of the velocity
field induced by our rotating teapot. Calculations were
based on the output of two sets of orthogonal filters:
010077 (0) and OY(1/2)-0% (n/2). Note, that the
resulting estimate of surface gradient is equivalent to
direct estimation of the maximal directional derivative by
means of winner-take-all network.

GIEDRIUS T. BURACAS and THOMAS D. ALBRIGHT

Similarly, the direction of maximal normal curvature
could be determined by a winner-take-all network that
stages a competition within a population of neurons
estimating the value of z,,/(1 + zg). The response of the
differential operator that is aligned perpendicularly to the
maximally responding filter is also needed for a complete
description of surface curvature as it yields an estimate of
the minimal normal curvature. Since the implementation
of a network estimating of the minimal normal curvature
by means of a ‘loser-take-all’ network may be difficult;
we suggest that the latter can be computed as a difference
between the outputs of the maximally responding
oriented and radially symmetric filters, e.g. if the
maximally responding filter is oriented along the x-axis,
we have: i, o« @, — L, and ﬁi o« @ — L.

From the above passage it should be obvious that we
can arrive at ecologically relevant representations of
moving surfaces with little effort, given the responses of
differential motion filters. We thus advocate the view that
MT neurons are more than just faithful speedometers
measuring velocities of retinally projected visual fea-
tures. They also have properties suitable for computing
the structure of surfaces carrying these features.

DISCUSSION

We have suggested, in computational terms, a func-
tional role for the receptive field surrounds characteristic
of neurons in visual area MT. Our approach has allowed
us to explain and integrate diverse and seemingly
contradictory data into a coherent theoretical framework,
in which MT neurons are predicted to participate in the
computation of object shape. Qur analysis demonstrates
that the differential-motion filters developed herein
closely approximate the experimentally observed proper-
ties of MT neurons. These filters convey estimates of
space differentials, essential in computing both surface
orientation and curvature, as well as other ecologically
important parameters of optical flow.

We have confined our attention to the components of
optic flow induced by translational motion. However, the
proposed differential motion filters would serve as well
for optic flow arising from arbitrary piecewise-rigid
motion, because generic estimation of shape-from-
motion involves first- and second-order differentiation
of velocity vector-field components (i.e. computation of
second-order deformation tensor) (Koenderink & van
Doorn, 1992).

Comparison with neural solutions for computing shape-
from-shading

Our ideas about the neural computation of shape-from-
motion in area MT have a direct parallel with the
proposition by Lehky and Sejnowski (1989) for a solution
to the shape-from-shading (SFS) problem. These inves-
tigators trained a neural network to compute curvature of
Lambertian surfaces using only shading information. One
consequence of training was the emergence of units
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possessing receptive fields with oriented spatial sensitiv-
ity profiles. The receptive fields appeared remarkably
similar to those known to exist in area V1, which have
traditionally been thought to function as line or edge
detectors, but can also perform the first-order (odd bi-
lobed RFs) or second-order (even tri-lobed RFs)
differentiation. For a Lambertian surface, irradiance is
proportional to the gradient of the surface function and
can be used for recovering curvature directly from first-
order derivatives of the shading profile. Likewise, solving
the curvature-from-motion problem also involves first-
and second-order differentiation, albeit of velocity vector
field components, not luminance. As we suggest herein,
this differentiation is performed by RFs with spatial
profiles very similar to those in V1.

The striking similarity of RF profiles in areas V1 and
MT supports the possibility that computing differen-
tials—contrast—may be a universal organizing principle
of topographically arranged sensory areas. This idea
resonates with the suggestion of Barlow and Foldiak
(1989) that the primary function of the cortex is
redundancy reduction via decorrelation of sensory input.
For smooth surfaces the low-order (zeroth, first, second
and few subsequent ones) terms of power series
expansion coincide with principal components. Thus,
representing surfaces in a form of low-order differentials
leads to redundancy reduction.

Motion contrast enhancement with RF surrounds

Besides responding to smooth variations in speed, RFs
with antagonistic surrounds (in general, and in the case of
differential motion filters) are also responsive to edges.
Our model thus implies that MT neurons must be
responsive to motion-contrast defined edges. For exam-
ple, L, responds vigorously at the surface boundary of the
rotating teapot [Fig. 7(c)] due to both motion contrast and
slant, which achieves a maximum at the boundary. Note
that L, starts responding abruptly at the contour, thus,
giving a highly localized signal about its position. Thus,
within the distance of 2-3 o, from the edge of a surface,
the filter response confounds curvature-or slant-related
variations of velocity field with depth discontinuity. This
confound may be neutralized by noting that L, responds
with a zero-crossing at the motion-contrast boundary and
by confining the shape analysis to regions beyond 2-3 o,
from the edge of a surface. Notably, neurons tuned to
kinetic (motion-contrast defined, either of shearing, or
compression/expansion type) edges have not been found
in area MT (e.g. Marcar, Raiguel, Xiao, Maes & Orban,
1991). We believe, that this failure can be explained by
the fact that the relevant experimental manipulations
have been largely confined to the classical RFs, which
alone are devoid of motion-contrast detecting properties.

Viability of the model: experimental quirks and data
shortcomings

Our model implies that the first-order differential-
motion filters should be monotonically tuned to motion
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gradients, while the second-order filters should be tuned
to second-order differentials. Treue and Andersen (1993)
measured the responses of MT neurons to motion
gradients and, indeed, found that approximately one-
third of the sampled neurons were selective for the
direction of the gradient, although this selectivity was
rather weak. Our model leads us to attribute this weak
selectivity to the nature of stimuli used in the study,
which were confined to the classical receptive field. Had
these investigators used motion gradients that spanned
center and surround RF subdivisions, we expect that
gradient selectivity would have been more pronounced.

Our analysis of SFM in area MT was based on
compilations of data across several primate species,
including the old-world rhesus monkeys (Macaca
mulatta) and Japanese macaques (Macaca fuscata), as
well as the new-world owl monkey (Aotus trivirgatus). It
should be noted, however, that existing evidence for
oriented receptive field surrounds—a critical feature of
the model—comes exclusively from M. mulatta (Xiao et
al., 1994). Without this property, the shape-from-motion
computation is limited to an estimation of slant and mean
curvature at singular surface points (see above). The
species generality of non-radially symmetrical surrounds
is suggested by evidence for the existence of asymme-
trical SRF profiles in the Claire-Bishop cortical area of
cat (the feline analog of primate MT) (Ruksenas,
Satinskas & Stabinyte, 1994).

The spatial resolution for SFM estimation of the
computational scheme proposed herein is limited by the
size of RF surrounds in area MT. While early data from
anesthetized animals indicated discouragingly large
SRFs (the radius of SRF being 7-10 times larger than
CRF; Allman et al., 1985), more recent studies of
surround/center ratios in alert macaques have yielded
much smaller values (SRF 2—4 times larger than CRF;
Born & Tootell, 1993; Xiao, personal communication).
The latter value constrains the resolution of SFM
estimation in fovea to 2—4 deg, since the diameter of
foveal RFs of MT neurons is about 1deg (Albright &
Desimone, 1987).

Effects of nonlinearities in speed tuning curves

We have assumed that local inputs to the MT-like
motion filters are (to a first approximation) semi-linear
functions of stimulus speed. It is known, however, that
many MT neurons are broadly tuned for speed with
Gaussian-shaped tuning profiles (Maunsell & Van Essen,
1983; Felleman & Kaas, 1984; Rodman & Albright,
1987). The equations of our model [(8a—c), (10a—c) etc.]
can be made compatible with this neuronal behavior by
approximating the monotonically raising and descending
parts of tuning functions by straight lines and applying
the model to each linear piece. We believe that the
general result will hold true for non-linear basis velocity
tuning functions as well. However, representation of
geometry-related parameters must then be distributed
among sub-populations of neurons, each of which
represents an interval of speed values.
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Alternative approaches in neural-like computation of
shape-from-motion

An alternative neural-like curvature estimation from
optic flow scheme was proposed by Droulez and
Cornileau-Perez (1990). Their method estimates the spin
variation of optic flow [e.g. in the direction of the x-axis
SWV(0) = v, the second partial x derivative of the vertical,
i.e., y, velocity vector component], which nicely accounts
for the asymmetry in 3D shape perception of a cylindrical
surface. This result can also be explained as follows:
because differential motion detecting neurons are not
known to respond in the absence of classical RF motion,
there will be zero response along the whole axis of a
vertical cylinder rotating along the axis positioned on its
surface. For a horizontal cylinder, by contrast, the zero
response will only be obtained at the point of fixation.
This difference may result in underestimation of
curvature for the vertical cylinder. Furthermore, the SV
relates to curvature through the slope-dependent para-
meter undermining the invariance of this descriptor.
Also, equation (17) suggests that in order to obtain the
scale-invariant shape index one also needs to compute the
second-order derivatives in the direction parallel to the
velocity vector (e.g. vy,) along with the first-order partial
derivatives. Our inclusion of oriented spatial differential
operators thus extends the concepts of Droulez and
Cornileau-Perez (1990) by suggesting that the shape from
motion mechanism computes first- and second-order
partial derivatives in all directions. This predicted
isotropy of differentiation direction is consistent with
the neurophysiological data of Xiao et al. (1994), who
found no correlation between preferred direction and a
putative direction of integration of MT neurons.

In their paper on second-order optic flow, Koenderink
and van Doorn (1992) have presented an excellent and
exhaustive analysis of second-order structure of an
arbitrary optical flow induced by a smooth surface under
orthographic projection. They correctly derived the
second-order dependency between the curvature of a
surface and concomitant optic flow, and sketched out a
hypothetical neural network possessing center—surround
structure capable of estimating the second-order defor-
mation tensor. However, lack of specificity about
neuronal properties of their network limits the predictive
power of their insightful analysis. Furthermore, confining
this abstract network to computation of a set of second-
order derivatives, rather than shape invariants, leaves the
analysis of potential neuronal mechanisms for SFM
incomplete. Our analysis suggests that the network
proposed by Koenderink and van Doorn can be
constructed from a set of oriented differential motion
filters by pooling across filters differentiating in all
directions and across all preferred directions. The
epipolar direction is then represented by the preferred
direction of the maximally excited neuron. In addition,
we propose that the actual shape invariants (i.e. principal
normal curvatures) may be estimated by setting competi-
tion between normalized outputs of oriented second-
order filters.
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Another alternative shape estimation scheme was
proposed by Dijkstra (1994), who demonstrated that the
Koenderink—van Doorn shape descriptors [equation (18)]
can be obtained from gradients of velocity field
divergence (div), curl (rof), and a double deformation

defldef()]:

2
|S.| = —arctan
i

|grad|div(v)] +J -grad[rot(v)]}}
|def [def (V)] ’

1 0

area MST neurons are tuned for combinations of
divergence and rotation (i.e., to spiral velocity flows)
(Duffy & Wurtz, 1991; Graziano, Andersen & Snowden,
1994; Lagae et al, 1994). Differentiating the spatial
output map of such cells should yield values that would
appear in the denominator of the above equation.
However: (1) MST neurons are not as selective for
deformation as they are for rotary and radial motion
(Lagae et al., 1994), which indicates that they are less
responsive to surface shape than to surface orientation;
and (2) the retinotopic representation in area MST is
coarse, suggesting that neighborhood relations necessary
for spatial differentiation may not be preserved, thus
undermining the neurobiological plausibility of this
computational scheme.

In summary, we propose that the RF surrounds in MT
cause these neurons to function as differential operators.
The described operators can be thought of as providing a
continuous interpolation of cortically represented sur-
faces. The recent discovery of elongated RFs with
flanking surrounds in area MT (Xiao et al., 1994), which
were predicted by our initial analysis (Buratas &
Albright, 1994) strongly supports our theory of shape-
from-motion computation. We have shown that RFs of
this variety allow direct estimation of the orientation of
velocity field-inducing surfaces. Computation of shape
invariants (principal curvature, scale invariant shape
descriptors) is notably advanced in this area as well. We
do not suggest that the actual estimation of invariants is
achieved in area MT; that operation may be carried out in
higher tiers of the cortical hierarchy. We conclude,
nonetheless, that MT neurons extract information from
velocity fields in a manner that is relevant to forming
representations of both ‘where’ and ‘what’.

. . .10 -1 .
where J is a rotation matrix [ ] . It is known that
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APPENDIX

Vector field components [equation (1)]

The two components of the vector field under perspective projection
are equal to (Horn, 1986):

o x Xz Y vz
(z+20) (z42)"

(z+20) (Z+Z())2.

Equation (2) can be readily achieved by plugging the three vector
components of equation (1) into the above equations and assuming that
w = [w",w’,0] and t = [0,0,7].

Convolution

The standard convolution integral between an arbitrary function
u(i, j) and Gaussian:

G(o) = G(xv, yo. )

2

_ 1 x—x0)’ + iy —y0)
T 2n0? CXP[ 202

is defined as:

ui, j) * Glow)

1 - .
= 2n? //N uli = x,j = y)G(x, y, oy )dxdy.

Normal curvature [equation 6]
The standard formula for normal curvature in direction of angle ¢:

k() =

Zoe COS% @ + 22, €OS 0 8iN @ + 2, 5iD%

1+ 224 22(1+ 22 cos? + 22 sin’ +2z,2, cos sin

(A1)
Mortenson (1985) greatly simplifies by noticing that the term in
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parentheses of the denominator is simply 1 + 72 (i.e. squared derivative
in direction of angle ¢), and the expression in the numerator is simply
z,,- Equation (6) can be readily achieved from the standard formula
(A1) for normal curvature by inserting ¢ = 0. The mean curvature for
the particular case of the maximal normal curvature aligned with the x-
axis is:

— Zxx Zyy
R = +

21 +2+22(1+22) 2. /1+2+2(1+2])
V22 + 2 + 22,
2(1+ D%+ 22)V1+ D%

(A2)

where V2 = Zee +2,, and D%z = zf + zf Now, for any direction ¢ and
direction ¢ perpendicular to ¢ (i.e. ¢ = ¢ + n/2) we can calculate the
mean curvature by replacing z; and z; derivatives (i,j = x,y) by z; and ;
with i,j = @,¢. Similarly, the scale-invariant shape index for kp;, and
Kmax aligned with coordinate axes can be expressed as:

2 Kmax + Kmi
Q = —arctan <M>
m

Kmax ~ Emin

2
= —arctan
™

(2o +259) + (Zxxzf + zy}'zi)}

(20 = 2y) + (202} — 2922

and partial derivatives here can also be replaced by directional
derivatives in both direction of the maximal curvature and the direction
perpendicular to it [as in equation (16)].

Derivatives of the optical flow

Differentiating the optical flow components « and v in the x and y
directions once yields:

wz, —F+2ux wz,
Uy = — - U, = ——2
X T * Yy i
Zp Zé 20
(A3)
wy —F 4 wx
V= -=, Vy=——.
2y 20

Combinations of these derivatives define the affine structure of the
vector field (Koenderink and van Doorn, 1975). The derivatives of the
vertical component v, and v, and the second term of u, scale with dis-
tance from the fixation point and depend on zo as O(z, " '). Confining
analysis to a limited visual angle around the fixation spot allows the
assumption that v, = 0 and v, = 0; u, and u, then become proportional
to z, and z,. Second-order derivatives can be estimated in a similar way:

w 2w w w
Uy = —— 2y — 5, Moy = — —Zyy, Uy = ——2Z,,
2 " 2(2] 9 Zo ” "
(Ad)
w
Vo =0, Vo = — =) vy = 0.
2y

We see that derivatives of u, after discarding O(l/zﬁ) terms are
proportional to corresponding derivatives of z(x,y) with the coeffi-
cient — w/zp. Thus, we can express the MacLauren expansion of u(x,y)
as in equation (11).

Interestingly, the mixed derivative of the vertical component can
help estimate the value of angular velocity of effective rotation w:
w=— vxyzg [bottom center equation of (A4)].

After discarding the second-order term, equations (A3) and (A4)
immediately suggest simplified solutions for partial derivatives of the
surface z(x,y), required in formulas for slant, tilt and curvature. If
needed, z, and z, can be estimated more precisely, with the second-
order term included:

29 X 20 Yy
z,:fg(ux—vy)—;a andzy:;v—(—uy+yx)+z—0, (AS)
where u and v are as in equation (6). In this case, estimates of
derivatives of the flow field can be received from the outputs of
oriented filters, while the second term may be discarded for x,y < z.
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Biologically plausible estimate of arctan
Both arctangent and hyperbolic tangent functions can be expressed as:
arctan(x) =~ x — x> + O” (x) = tanh(x). (A6)

The two functions can further be brought closer to each other by
adjusting the T parameter of equation (9). Furthermore, since
tanh(x) = [tanh(x) — tanh(— x)]/2, we can approximate the arctan-

gents, which show up in expressions for geometrical descriptors
[equations (5), (17)] by a sum of two sigmoidal functions, one
representing positive, and the other representing negative parts of
arctan: arctan(x) ~ [S(x) — S(— x)]/2. Here b is set to b=0, and T
minimizes arctan(x) — [S(x) — S(— x)]/2. Thus, sigmoidal activation
functions can serve as a biological substitute for arctan.



