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Abstract 

A conductance-based model for synaptic transmission and postsynaptic integration reveals 
how postsynaptic responses and their variability depend on the number of synaptic inputs. 
With increasing number of balanced stochastic excitatory and inhibitoly inputs, the postsynap- 
tic responses and their variance first increase and then decrease again. This non-linearity can 
be attributed to an anti-correlation between the total excitatory and inhibitory currents. The 
anti-correlation, which occurs even though the conductances of the individual synapses vary in- 
dependently of each other, is determined by the total synaptic conductance and grows with the 
number of inputs. As the number of inputs increases, the membrane potential comes increasingly 
closer to the resting level. 
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1. Introduction 

A neuron that is synaptically contacted by N input neurons does not necessarily re- 
ceive input from all those neurons simultaneously. The presynaptic neurons contributing 
to the response of an integrating neuron are mainly those that are stimulated. This is 
a plausible assumption, for instance, when a stimulus is moved across the receptive 
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field of a visual interneuron. We analyze the effect of the number of active synaptic 
inputs on the variability of the postsynaptic responses with a conductance-based model 
that was fitted to experimentally determined data of fly motion-sensitive interneurons 
[3]. These cells receive an equal number of excitatory and inhibitory synaptic inputs, 
that, depending on the stimulus, can both be activated simultaneously. Here we model 
one special situation by assuming that both types of inputs have equal maximum con- 
ductance. We assume all presynaptic signals to be independent from each other. The 
number of pairs of excitatory and inhibitory inputs was varied in the range from 1 to 
1000, corresponding to stimuli of different sizes, ranging from a tiny stimulus to one 
that covers the entire receptive field of the fly visual interneuron. 

With this conductance-based, one-compartment model of synaptic transmission and 
postsynaptic integration we show that not only the average postsynaptic responses but 
also their variability depend non-linearly on the number of active synaptic inputs. This 
non-linear dependence is accompanied by an anti-correlation between total excitatory 
and inhibitory currents that occurs even though the individual presynaptic membrane 
potentials are uncorrelated. 

2. The model 

2.1. Model of synaptic transmission and postsynaptic integration 

To analyze how postsynaptic responses depend on the number of synaptic inputs 
we use a conductance-based, one-compartment model for synaptic transmission and 
postsynaptic integration. Analogous to the graded information transfer between neu- 
rons in the retina or the olfactory bulb of vertebrates (review Ref. [4]) or between 
fly visual neurons, synaptic transmission is not restricted to presynaptic spikes. The 
graded de- and hyper-polarizations of the presynaptic membrane potential induce con- 
ductance changes of the postsynaptic membrane 
function. 

The resulting postsynaptic potentials contribute to the 
V(t) according to a one-compartment model of a passive 

via a sigmoidal transfer 

continuously varying signal 
membrane. 

with postsynaptic membrane potential V( t ) ,  membrane capacitance C, resting poten- 
tial V;.,,,, leak conductance g,?,, maximal synaptic conductances g, and gi, number of 
synaptic inputs N, and Ni, reversal potentials E, and Ei. 

The maximum conductance of each individual synapse g, or gi is scaled at every 
time step with s,,(Vp,,,) or si,(Vp,,,), a scaling factor depending on the presynaptic 
membrane potential Vpre. In the case of excitatory synapses the scaling factor s, is 
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determined according to the equations 

where z, (=z,) denotes the synaptic time constant with which the steady state scaling 
factor S, (c) for a given value of V,,, is reached. The steady state scaling factor & (S,) 
is a sigmoidal function of V,,,. A, (=A,)  determines the slope of the transfer function. 
FIe (=Vh,) is the value of V,,, for which the half maximum conductance is reached. 
Equivalent equations are used for inhibitory synapses. 

Unless otherwise specified parameter values are C = 4.2 . lo-'' F ,  = -50 mV, 
g m = 2 .  S ,  g, =gl  = 2 .  N,=N, = 1...1000, E, =OmV, E, = -100mV, 
z,=z,=O.l ms, VhL =Vh, =l mV, A,=A,=0.5 mV. The parameter values are chosen to be 
in the range experimentally determined for visual interneurons of the fly [ I ] .  Identical 
model parameters for excitatory and inhibitory synapses are a good approximation for 
this system. 

2.2. Model of spike generation 

A simple model of spike generation that was used before to reproduce and explain 
experimental data of fly visual interneurons [3,5] transformed the postsynaptic mem- 
brane potential V ( t )  into spikes. This model consists of a variable threshold O(t) that 
is compared with the membrane potential V ( t ) .  A spike is generated if V ( t )  > O(t). 
The spike threshold is calculated for each time step according to the equation 

with t* being the time when the previous splke occurred and yE f  the absolute refractory 
period. do is a constant basis threshold llke in a standard integrate and fire neuron, 
q(t - t * )  = yo/(t - (t* + f e f ) )  is the influence of the relative refractoriness with weight 
constant yo. p(ti)= -po/T. cT=~ l / j . ( V ( t i )  - V(t,_,)) is the influence of the membrane 
potential changes within the last T data points, with weight constant po and actual 
membrane potential V(t i ) .  Parameter values: 00 = 1 mV, yref = 2 ms, yo = 20 ms . mV, 
po = 3.75, T = 1 ms [3]. 

2.3. Generation of input signals 

The membrane potentials of the presynaptic neurons fluctuate stochastically and in- 
dependently from each other. This membrane potential noise is modeled as Gaussian 
white noise that is low-pass filtered and has a variance of 2.5 mv2. It was adjusted to 
fit the variance and the power spectrum of intracellular recorded membrane potential 
noise in visual interneurons of the fly [3]. 
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The duration of the input traces amounts to 1.32 s at a temporal resolution of 0.01 ms. 
This resolution was also used for all model simulations. All results shown here are 
averages over at least 100 simulations with different random inputs (see legends). 

3. Results 

3.1. The response of the integrating neuron with balanced excitation and inhibition 
depends non-linearly on the number of active synaptic inputs 

First, the spike count increases steeply with increasing input number, then it reaches 
a maximum and decreases (Fig. 1A). Also the spike count variance (Fig. 1B) and the 
variance of the graded fluctuating postsynaptic potential that underly the spike responses 
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Fig. 1. The mean spike count (A), the spike count variance (B) and the variance of the postsynaptic potential 
(C) show a non-linear dependence on the number of active synaptic inputs. The anti-correlation between 
total excitatoiy and inhibitory currents assumes increasingly larger negative values with increasing number 
of inputs (D, solid line). When the total synaptic conductance is scaled by the number of inputs to keep it 
constant, the correlation between excitatory and inhibitory currents does not depend on the number of inputs 
(dashed lines). For the dashed lines 300 independent trials of 1.32 s duration were averaged, for the solid 
lines 3000 trials. 



J. Kretzbery et al. lNeurocomputiny 52-54 (2003) 313-320 317 

(Fig. 1C) depend in a non-linear way on the number of inputs. The similarity of 
Fig. 1C to Figs. 1A and B shows that the non-linear dependence is not due to the 
non-linearity of the spike threshold but is a property of the integration of synaptic 
inputs by a passive membrane. 

3.2. Postsynaptic responses depend on the correlation of excitatory and inhibitory 
currents 

The non-linear dependence of the postsynaptic responses on the number of in- 
puts parallels the finding that the total excitatory and inhibitory currents are strongly 
anti-correlated for large numbers of synaptic inputs as is shown by the solid line in 
Fig. ID. This anti-correlation occurs even though the membrane potentials of the in- 
dividual presynaptic neurons are absolutely uncorrelated and the fluctuations of V ( t )  
are small compared to the distances to the reversal potentials. The reason for the 
anti-correlation between the total currents is the coupling of both excitatory and in- 
hibitory currents to the postsynaptic membrane potential value. When the postsynaptic 
potential moves towards the excitatory reversal potential, the inhibitory driving force 
increases, leading to a large current opposing the excitatory current. This push-pull 
mechanism keeps the membrane potential close to the resting potential, resulting in 
fluctuations with a standard deviation as small as 1.5 mV. 

The anti-correlation of the currents is determined by the maximum total synaptic 
conductance g,,, =N,,, .gSy,  that can be reached when all N,,, synapses are maximally 
activated. The anti-correlation does not depend on the number of independent stochastic 
processes that are used as input signals. To obtain this result, the total maximum 
synaptic conductance g,,,,, was kept constant by scaling gsyn = ge = gr with the increase 
of the number of synaptic inputs N,,,. In this case the correlation between the total 
excitatory and inhibitory currents is constant for varying numbers of independent inputs 
and depends only on the value of g,,, (dashed lines in Fig. ID). The correlation 
function for the standard case (solid line in Fig. ID) where gm,, increases linearly with 
the number of inputs intersects the correlation function for a given g,,,, (dashed lines) 
exactly at the number of inputs that leads to the same maximum synaptic conductance. 

3.3. Postsynaptic responses depend on the number of independent stochastic 
processes 

Since the correlation between excitatory and inhibitory currents depends on the total 
maximum synaptic conductance it is not surprising that the postsynaptic potential vari- 
ance depends quantitatively on the value chosen for the maximum conductance g,,, of 
one synapse. For a given number of synaptic inputs, the variance is larger for larger 
g,,,. Moreover, the maximum variance is reached at smaller numbers of inputs when 
g,,, is increased (Fig. 2A). 

In contrast to the correlation of currents the membrane potential variance is not 
solely determined by the maximum total synaptic conductance g,],,, = N,,, . g,,,,. The 
stars in Fig. 2A indicate two configurations with the same total synaptic conductance 
g,,,. The left star indicates a situation with half the number of independent synaptic 
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(A) Number of exc. & inh. input pairs (B) Normalized number of exc. & inh. input pairs 

Fig. 2. (A) The variance of the postsynaptic potentials depends on the synaptic conductance. (B) When the 
curves shown in A are scaled in x- and y-direction by setting the maximum variance and the number of 
inputs at that maximum to 1, all curves have qualitatively the same shape. Between 100 and 300 independent 
trials of 1.32 s duration were averaged for each data point. Stars are explained in Section 3.3. 

inputs Nsyn and twice the conductance g,,, for each synapse as in the case indicated 
by the right star. The combination of stronger but less inputs leads to a dramatically 
higher postsynaptic variability than that of more but weaker synaptic inputs. 

Despite the quantitative differences, qualitatively the variance curves do not differ 
for different values of g,,,. When the curves are scaled by setting both the maximum 
variance and the number of inputs at the maximum to one, all curves are similar 
(Fig. 2B). 

The same analysis was done for the other model parameters. For all parameter 
combinations tested the postsynaptic response and its variance depends non-linearly on 
the number of inputs. 

4. Discussion 

We have shown that the strength and the variance of postsynaptic responses (mem- 
brane potential fluctuations as well as spike counts) depend in a non-linear way on 
the number of synaptic inputs. This non-linear dependence of postsynaptic spike re- 
sponses on the number of synaptic inputs has recently been found experimentally in 
dynamic clamp stimulation of granule cells of the dentate gyms in rats (S. Hamey 
and M. Jones, "Temporally Precise Spiking in the Presence of Synaptic Noise", CNS 
abstracts, Elsevier Preprint server). Similar results were reported in rat somatosensory 
cortex pyramidal neurons for the amplitude of sub-threshold membrane potential fluc- 
tuations 121. Hence, this non-linear dependence on the number of synaptic inputs is 
a basic property of neurons. It is not induced by the spike non-linearity but by the 
anti-correlation of the total excitatory and inhibitory synaptic currents, which depends 
on the total synaptic conductance. 
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