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Abstract

The output precision and information transmission was studied in a model neocortical
neuron that was driven by a periodic presynaptic spike train with a variable number of
inhibitory inputs on each cycle. Spike-timing precision was maintained during feedforward
propagation during entrainment. The range of presynaptic "ring rates and precision for
entrainment was determined. During entrainment the Shannon information of the output spike
phase was reduced but the amount of information the neuron transmitted about the synaptic
input was increased. We quantify how robust information transmission is against intrinsic
neuronal noise. We propose how neuromodulation, via entrainment, can regulate the informa-
tion transfer in neocortical networks. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Electrophysiological recordings from the living brain reveal synchronized oscilla-
tory activity in the delta (0.5}2 Hz), theta (5}12 Hz) and gamma (30}80 Hz) frequency
ranges [1]. The functional relevance of these synchronized oscillations is unknown.
Here we explore an alternative to the hypothesis that gamma oscillations bind
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Fig. 1. Diagram of information-theoretical analysis. (a) Postsynaptic neuron (PN) receives inputs from
a synchronized network of inhibitory neurons. Individual neurons "re at a "xed phase, �"12.5 ms with
temporal jitter �

��
and sometimes skip cycles. The postsynaptic neuron produces a spike on each cycle. (b)

The number n
�
of active neurons in cycle i is mapped onto a spike phase �

�
in the next cycle. The spike phase

� is the spike time modulo ¹. (c) Distribution P
�

of n (left hand side) and distribution P
�(

of n conditional
on � (right hand side). The mutual information M

�(
is large (top) when the conditional distribution is sharp

and small (bottom) when it is dispersed.

neurons representing the distinct perceptual features of an object. Neurons use spikes
to carry information between brain areas. A commonly used information measure is
the Shannon entropy of the spike times or interspike interval distribution [9,10].
During synchronized oscillations the spike times are precise, the spike time distribu-
tion is sharp, and its information capacity small. Why would populations of neurons
synchronize if this reduces their information content? We report here that despite
a reduced spiking variability, the neuronal output in the synchronized state conveys
more information about the synaptic input: the mutual information between the
synaptic input and the output spike time increases during synchronization. This result
suggests that neurons can indeed support a spike-timing code during synchronization.

Tonic activation of local interneuron networks in hippocampal slices produces
a synchronous synaptic drive to pyramidal cells in the gamma frequency range [14]
(see also [3]). These interneuron networks may also be responsible for the long-range
coherence of gamma oscillations [12]. Here we study the transmission by cortical
neurons of the synchronized activity of a presynaptic network of interneurons.

2. Methods

The activity of the synchronized interneuron network can be accurately described
using three parameters: the cycle length ¹"25 ms of the population discharge, the
temporal dispersion �

��
of the network spike time distribution in each cycle, and f

���
,

the number of inhibitory postsynaptic potentials (IPSPs) generated by the network
per second [11]. We generated the presynaptic spike trains using the method de-
scribed in [11]. Example spike trains are shown in Fig. 1a. Each presynaptic spike
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produced an exponentially decaying conductance pulse in the postsynaptic cell,
yielding a current I

�	�
"g

�
exp(!t/t

�
)(<!E

����
). In this expression t is the time

since the pulse arrival, t
�
"10 ms is a decay constant, g

�
"0.002 mS/cm� a conduc-

tance, < the membrane potential, and E
����

"!75 mV, is the reversal potential.
The total synaptic conductance cannot exceed g


��
"0.1 mS/cm�. The resulting time-

series of conductance pulses drives a single compartment neuron with Hodgkin}
Huxley voltage-gated sodium and potassium channels, a passive leak current, the
synaptic currents described above, and an applied current representing the membrane
depolarization caused by neuromodulators. A detailed description of the model
neuron and its implementation is given in [11,13]. This formulation accurately
represents the spike generation in fast and regular spiking cortical pyramidal cells [8].

For the purpose of information-theoretical analysis we map the input spike trains
into a single variable, n

�
pulses in cycle i, or for brevity, n pulses per cycle (Fig. 1b). The

input capacity is the entropy S
�

of the input distribution P
�
, and the output capacity is

the entropy S
(

of the phase histogram P
(

(the bin width is 1 ms). The neuron maps
a particular value of n

�
into a spike phase �

�
. The joint probability distribution P

�(
is

obtained by counting the data points (n
�
, �

�
) in a two dimensional set of bins. The

mutual information is the entropy of this distribution

M
�(

"S
�
#�

(�

P
(
(�

�
) �

�

P
�(

(n��
�
) log

�
P
�(

(n��
�
)

and measures, on average, how much the uncertainty in the input is reduced by
knowing the output [2]. The mutual information M

((
between consecutive spike

phases is calculated similarly.

3. Results

For the synaptic strength used here the output jitter �
��

is only smaller than the
input jitter �

��
on entrainment steps [11]. The 1 : 1 entrainment step, when the neuron

produces one spike per cycle, is the most stable. We show in Fig. 2a an example of
this resonance for �

��
"1 ms and presynaptic "ring rate f

���
"2500 Hz. At

I"1.0 �A/cm�, �
��

is still above 5 ms. Increasing the current drives the neuron into
entrainment, and �

��
drops below 1 ms. The output entropy, S

(
, is closely related to

the width of the phase distribution, and it drops from 4.2 to less than 1 bit per spike.
The mutual information M

�(
, however, goes from a value close to zero, to approxim-

ately �
�

a bit per spike (for other parameter values M
�(

could reach 2 bits). We
investigated this result in more detail by comparing the map of � versus n when the
neuron was entrained, to when it was not (not shown). In the latter case a given � is
reached from a large range of n values. Therefore knowing a particular � value reveals
little about the input that produced it. Hence the mutual information in this case is
low (Fig. 1c, bottom). During entrainment the input n is mapped onto a small range of
� values, hence leading to high precision. Furthermore, observing a low value of
� implies that the input n was also small. Thus, observing a certain value of � reduces
the uncertainty about the input, leading to a higher mutual information (Fig. 1c, top).
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Fig. 2. (a) Firing rate (left hand side scale) and output jitter �
��

(right hand side scale) as a function of
neuromodulator current I. The neuron produces one spike per cycle at high precision for I"1.15}1.30. (b)
S
��

(solid line), M
�(

(dotted line), and M
((

(dot-dashed line) as a function of current. The curves have been
scaled, S

��
:M

�(
: M

((
"5 : �

�
: �
�
, to "t in the "gure. Here, �

��
"1 ms and f

���
"2500 Hz.

The di!erence in transmitted information between the two cases can be understood by
determining the mutual information M

((
between the phase �

�
in the present cycle

and �
���

in the next cycle. The mutual information in this case quanti"es the
reduction in the uncertainty about the next phase knowing the present phase. During
entrainment the observed phases are essentially independent, the mutual information
is close to zero (Fig. 2b), and the phase #uctuates around a well de"ned average. In
contrast, without entrainment there is more structure in the return map (not shown).
A given value of �

�
maps onto a distribution of �

���
values that is di!erent from the

total distribution (and also has a di!erent mean). The mutual information of this
distribution can be higher than 1 bit per spike.

The neuron can thus be in two states. One in which the phase variation from cycle
to cycle re#ects the variation in the input, and one in which the variation mostly
re#ects the internal correlations. Decreasing or increasing the current drive can switch
the neuron from the entrained state to a non-entrained state.

4. Discussion

We explored how well the information present in the presynaptic drive is trans-
duced to the output spike times. That is, we determined how well the neuron can
convey the number of pulses in a cycle by the phase of the output spike. The output
entropy is not a good indicator of the useful information content for this particular
task. Indeed, outside entrainment the output entropy is high and the mutual informa-
tion is low, whereas during entrainment the output entropy is small, but the mutual
information is increased. The mutual information limits the maximum amount of
information any postsynaptic neuron can infer about the presynaptic input of the
emitting neuron. In the "rst case the neuron produces a lot of information, but that
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information does not tell the postsynaptic neuron anything about the emitting
neuron's input. In the second case the emitting neuron produces a small amount of
information, but most of it is useful.

Subcortical projections originating in the basal nucleus of the forebrain release the
neuromodulator acetylcholine (ACh) in cortex and hippocampus. The ACh concen-
tration varies between waking and sleep. The known physiological e!ects of ACh
include blockade of the slow afterhyperpolarization current (AHP) and an increased
excitability [7]. Application of the cholinergic agonists can induce synchronized
gamma-frequency oscillations in hippocampal slices [4,5]. In our model neuron
a higher ACh concentration corresponds to a higher driving current, making the
neuron more excitable. A higher ACh concentration could switch the model neuron
from a non-entrained to an entrained state. The information #ow in cortex can
therefore be dynamically gated by neuromodulators released by ascending subcortical
projections.

These results point toward a new view of the role of oscillations in information
processing. Without entrainment a cortical neuron is a traditional integrator and
transmits information through changes in its "ring rate; during entrainment, which is
promoted by neuromodulators and characterized by gamma band activity, a cortical
neuron can transmit information about its inputs more e$ciently by the relative spike
timing within the cycle, as suggested by Hop"eld [6]. Experiments in vivo need to be
carried out to test this possibility.
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