Center for Theoretical Neuroscience at Columbia
Papers and research supported in part or in whole by The Swartz Foundation
Muscinelli S., Wagner M., Litwin-Kumar A. (2022) Optimal routing to cerebellum-like structures View, bioRxiv. doi: 10.1101/2022.02.10.480014 Engelken R, Ingrosso A, Khajeh R, Goedeke S, Abbott LF (2022) Input correlations impede suppression of chaos and learning in balanced rate networks, ArXiv:2201.09916 [q-bio.NC]. Engelken, R., Wolf, F. and Abbott, L.F. (2021) Quantifying dynamic stability and signal propagation: Lyapunov spectra of chaotic recurrent neural networks, 2020 Conference on the Mathematical Theory of Deep Learning. R. Engelken, F. Wolf, and L. F. Abbott (2020) Lyapunov Spectra of Chaotic Recurrent Neural Networks, ArXiv:2006.02427 [Nlin, q-Bio].
Return to Center for Theoretical Neuroscience at Columbia main page
Return to main Research page